High-order closed Newton-Cotes trigonometrically-fitted formulae for long-time integration of orbital problems
نویسنده
چکیده
The connection between closed Newton-Cotes, trigonometrically-fitted differential methods and symplectic integrators is investigated in this paper. It is known from the literature that several one step symplectic integrators have been obtained based on symplectic geometry. However, the investigation of multistep symplectic integrators is very poor. Zhu et al. (1996) presented the well known open Newton-Cotes differential methods as multilayer symplectic integrators. Also, Chiou & Wu (1997) investigated the construction of multistep symplectic integrators based on the open Newton-Cotes integration methods. In this paper we investigate the closed Newton-Cotes formulae and we write them as symplectic multilayer structures. After this we construct trigonometrically-fitted symplectic methods which are based on the closed Newton-Cotes formulae. We apply the symplectic schemes in order to solve Hamilton's equations of motion which are linear in position and momentum. We observe that the Hamiltonian energy of the system remains almost constant as integration procceeds.
منابع مشابه
A New High Order Closed Newton-Cotes Trigonometrically-fitted Formulae for the Numerical Solution of the Schrodinger Equation
In this paper, we investigate the connection between closed Newton-Cotes formulae, trigonometrically-fitted methods, symplectic integrators and efficient integration of the Schr¨odinger equation. The study of multistep symplectic integrators is very poor although in the last decades several one step symplectic integrators have been produced based on symplectic geometry (see the relevant lit...
متن کاملTrigonometrically fitted two-step obrechkoff methods for the numerical solution of periodic initial value problems
In this paper, we present a new two-step trigonometrically fitted symmetric Obrechkoff method. The method is based on the symmetric two-step Obrechkoff method, with eighth algebraic order, high phase-lag order and is constructed to solve IVPs with periodic solutions such as orbital problems. We compare the new method to some recently constructed optimized methods from the literature. The numeri...
متن کاملError estimation of fuzzy Newton-Cotes method for Integration of fuzzy functions
Fuzzy Newton-Cotes method for integration of fuzzy functions that was proposed by Ahmady in [1]. In this paper we construct error estimate of fuzzy Newton-Cotes method such as fuzzy Trapezoidal rule and fuzzy Simpson rule by using Taylor's series. The corresponding error terms are proven by two theorems. We prove that the fuzzy Trapezoidal rule is accurate for fuzzy polynomial of degree one and...
متن کاملCentroidal Mean Derivative - Based Closed Newton Cotes Quadrature
In this paper, a new scheme of the evaluation of numerical integration by using Centroidal mean derivative based closed Newton cotes quadrature rule (CMDCNC) is presented in which the centroidal mean is used for the computation of function derivative. The accuracy of these numerical formulas are higher than the existing closed Newton cotes quadrature (CNC) fromula. The error terms are also obta...
متن کاملA High-accuracy Method for Numerical Integration of Age- and Size-structured Population Models
In many applications of ageand size-structured population models, there is an interest is obtaining good approximations of total population numbers rather than of their densities. Therefore, it is reasonable in such cases to solve numerically not the PDE model equations themselves, but rather their integral equivalents. For this purpose quadrature formulae are used in place of the integrals. Si...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer Physics Communications
دوره 178 شماره
صفحات -
تاریخ انتشار 2008